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S U M M A R Y  
The general mathematical formulation of the laws of conservation of mass and energy and the equation of motion 
are derived for a moving thread. Within the thread only forces in tangential direction are considered : internal stresses 
perpendicular to the tangential direction are left out of consideration. The equations as formulated here can easily be 
applied to many problems in the various stages of fibre processing. 

1. Introduction 

In order to derive a mathematical formulation for the behaviour and the properties of a 
running thread that passes thread guides, speed regulators, friction elements, heating elements 
etc. three fundamental physical laws are essential. They are the law of conservation of mass, the 
equation of motion and the law of conservation of energy (first law of thermodynamics). In 
this paper the general mathematical formulation of these laws is derived for a running thread. 
Within the thread only tangential forces are taken into consideration. Besides, all mechanical, 
structural and heat properties are assumed to be the same in all points of any cross section of 
the thread. So the behaviour and properties of a particle within the thread are fully characterized 
by the cross section to which the particle belongs and by time*. Furthermore, throughout this 
paper it is assumed that no mass is supplied to or withdrawn from the thread. 

The physical laws will be formulated for a part of the yarn with a finite length in the form of 
integral equations. From them partial differential equations are derived. By following a 
moving particle the equations are given in Lagrangian coordinates; with respect to a fixed 
system of coordinates the equations are given in Eulerian coordinates. Both systems of coor- 
dinates are taken into consideration. 

The reader who is interested in this material may be referred to the well-known book by 
Prager [9], which deals with particles that move with respect to a fixed system of coordinates 
(e.g. water in a vessel); this paper discusses a one-dimensional extension of this theory to 
particles which move within a system (the thread) that is in motion itself. 

Several authors deal with special problems in this field. E.g., ballooning is studied by Mack 
[7], Gerdes and De Maat [5] and Ames, Lee and Zaiser [1]; yarn twisting on rollers by 
Thwaites [10] ; spinning is dealt with by Kase and Matsuo [6], and Pearson and Matovich [8] ; 
non-linear vibration of running threads is considered by Ames, Lee and Zaiser [1], see also 
Broer [2]. 

The purpose of this general study was to increase the insight into concepts, definitions and 
mathematical formulation of the physical phenomena during the textile processes of synthetic 

* So, torsion around the thread axis is not taken into consideration. 
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yarns. The properties of the yarn at the end of the textile process also depend on rheology, 
crystallinity, orientation etc. of the synthetic product. These properties are mostly described by 
empirical expressions based on the results of lab-scale experiments. These expressions are not 
dealt with in this paper. It is indicated, however, where these relations are of importance in the 
mass, momentum and energy balances. The general form of the equations enables one to apply 
them easily to many problems in various stages of fibre processing, such as spinning, drawing, 
twisting on rollers and ballooning on spindles. 

2. Definition and concepts 

We choose a fixed system of coordinates X, Y, Z in the three-dimensional space with origin O. 
In this space moves a thread. An arbitrary point O' of the thread is chosen as a reference 
point. O' may be fixed on the thread (e.g. an end), or moving along the thread. O' may also be 
fixed or moving in space (e.g. a thread guide). 

Each cross section of the thread will be considered as a mathematical point. We call such a 
point a particle or yarn element. In order to characterize the position of any particle along the 
thread the following points of view are possible: 

a) Eulerian Coordinates 
The position of any element is defined by the arc length s, i.e. the actual length measured along 
the thread from reference point O' at time t, i.e. real time measured from an initial time to. 

The position r of any thread element (see Fig. 1) with respect to the coordinates X ,  Y, Z is a 
function of s and t. 

r(s, t) = (x(s, t), y(s, t), z(s, t)). (1) 

If t is constant, this function v=v(s) gives the actual position of the thread in space at time t. 
If s is constant, r = r(t) describes the movement in time of the particles at distance s from O'. 

Z position of thread 

- I  

~x 

Figure 1. The thread moves within a three-dimensional space. 

b) Lagrangian Coordinates 
In this case, any thread element is labelled by l, which is defined as the arc length with respect 
to reference point O' at initial time to. 

In order to avoid confusion time is here denoted by z. In fact t - z .  The position r of any 
thread element is a function of 1 and z : 

r(l, "c) = (x(1, ~), y(l, ~), z(l, z)).  

If z is constant, r = r(/) describes the thread position in space. If I is constant, r =  r(~) describes 
the movement of thread element I in time. 

With these definitions, the relations between the coordinates s and t (Eulerian coordinates) 
and the coordinates 1 and z (Lagrangian coordinates) are given by: 
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t = z , s =  s(1, v) . (2) 

We define: 

st = v (3) 
and 

sl = 1 + e (4) 

v is by definition the arc length passed per unit time by the particle, e is the strain or elongation. 
The strain at initial time to is assumed to be 0. ~ and v are functions of s and t, or l and -c 
respectively. In the literature the symbols D f / D t  and f are also used for f~. 

The velocity of a particle referring to the original system of coordinates X, Y and Z is given 
by: 

w = re (5) 
o r  

w = rt + yrs .  (6) 

To the velocity w of a particle contribute vr s as the velocity of the particle along the thread, and 
the term r t as the movement of the thread in position s. In stationary situations, v is the yarn 
speed and equals the length of w. 

By definition of the arc length s : 

r s'rs = 1 . (7) 

Two useful properties can be derived from (7) in a simple way. Differentiation of (7) with 
respect to s yields: 

rss'rx = 0 (8) 

and to t: 

r~t'r s = O. (9) 

So, the vectors r~ and r~, lie in the plane perpendicular to the unit tangent r~. 

1 
rs~ = ~ n (10) 

where R is the radius of curvature and n is the main normal with unit length. 
Whether we will formulate and solve our problem in Eulerian coordinates (s and 0 or in 

Lagrangian coordinates (I and z) depends on the complexity of the equations and of the 
boundary conditions. Generally, the system of differential equations is simpler in Lagrangian 
coordinates than in Eulerian coordinates, because the law of conservation of mass, the equation 
of motion and the law of conservation of energy are all related to the moving element. Also 
other physical and structural properties are often connected with the particle in motion. 
However, the apparatus influencing the movement of the thread is mostly given in space. The 
initial and boundary conditions have therefore in the Eulerian coordinates mostly a simpler 
form than in Lagrangian coordinates. In this paper the physical laws will be formulated in both 
systems of coordinates. 

It should be observed that the definition of the meaning of the Lagrangian coordinates I and 
"c of this paper is not the only possible one. For instance, the meaning of time z may also be 
defined as the "residence" time of a particle, from the moment that this passes the guide 
point O'. With this definition of z equation (2) has to be extended. 

In this way the boundary conditions can sometimes be simplified. In this paper the meaning 
of v will be restricted, however, to the real time measured from the initial time to. 

At the end of this chapter two important properties are mentioned that will be used several 
times in the next chapters. 

a) I f S s f d s = O  for any length s, then f = 0  (11) 
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b) For a function f=f(s,  t)=f(l, z) differentiable both with respect to s and t and with 
respect to l and z, the following relations hold: 

0 f J~ls=~ f fs~dl= f(fs~)~dl= Is(fst)~s~lds (12) 

or, with (3): 

of O-T fds = (f~+ fvs)ds = {f~+(fv)~}ds, (13) 
, i S  

Eq. (13) is sometimes called Reynolds' transport theorem, see e.g. [4, p. 282]. 

3. Law of  conservation o f  mass  

Let p be the density of the material, p' the linear density or mass per unit length and A the area 
of a cross-section. The following relation holds : p' = pA. A, p and p' are functions of I and z, or 
s and t. 

The law of conservation of mass states that the change of mass of a certain finite thread 
element per unit time is zero, since no mass is supplied to or withdrawn from the thread. It 
can be formulated as follows. 

)i p'as = 0 (14) 0z 

s is the actual arc length of the thread element considered, and depends o n  z. Using (11) and 
(12), we can also write 

(p'  sz)~ = o . (15)  

So, using (4): 

p'(1 +e) = a function of 1. (16) 

In other words, p'(1 + e) is constant for each particle. In the special case that at t = to the thread 
is homogeneous, which means that the density and area of cross section are the same in all 
points of the thread, we may write : 

p'(1 + e )=  constant along the whole thread.  (17) 

With respect to the Eulerian coordinates s and t and using (11), (13) and (14) the mass balance 
can be written as follows: 

p'~+(p' v)~-~ O. (18) 

4. Equation of  motion 

The forces acting on a segment of a moving thread with a given length s are represented in 
Figure 2. 

a) The yarn load at the ends of the thread segment: 

F(sz)-F(sl) = ~ F~ds. 
Js 

F(s,) s, s2 F(s2) 

Figure 2. Forces acting on a thread segment s. 
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Only tangential forces are taken into consideration: 

F = Fr~. (19) 

b) The external force K acting on the segment s can be distinguished into a contribution of 
volume or mass forces such as gravity, and the contribution of external forces acting on the 
surface of the thread such as a friction. If the behaviour of the thread was formulated in more 
dimensions, these latter forces would determine the boundary conditions. In our cases, how- 
ever, where the thread is considered one-dimensional, these external forces can also be dealt 
with as volume forces. Introducing g '  as the force acting per unit of actual length, we may 
write : 

K = f K'ds.  (20) 

The equation of motion states that the change of momentum of a yarn element per unit time is 
equal to the total force acting on the element�9 Using (19) and (20), it can be formulated as : 

O-z p'wds = (F,+K')ds.  

With (11) and (12) and,the mass balance (15), we may write: 

p'w~ = F~+K'. (21) 

Using (6) and (19) this equation can be written with respect to the Eulerian coordinates s 
and t as follows: 

p' rtt + p' rs (vt + vv~) + p' v 2 rss + 2p' Vrst = F s r s + Fr~s + K' . (22) 

The terms on the left-hand side of (22) have the following meaning : 

(i) p' r~t acceleration of the thread for a fixed coordinate s 
(ii) p'(vt + VVs) = p's~ acceleration of a particle along the threadline, 
(iii) p'v2r~s = p'v2n/R centrifugal force, perpendicular to the thread, see (8) and (10), 
(iv) 2p' vrs~ Coriolis' force, perpendicular to the thread, see (9). 

By multiplying (22) with r~ and using (7), (8) and (9) the equation of motion in tangential 
direction can be written as: 

p' r," r~+p'(vt+VVs) = F~+K'" r s , (23) 

5. Law of  conservation of  energy 

If u is defined as the internal energy per unit mass, p'u if the internal energy per unit of actual 
length. We introduce the heat transferred to the thread per unit time and per unit of actual 
length : q'. The conductive heat flows through the ends sl and s 2 of a line segment s in positive 
direction are called Q(sl) and Q (s2). 

The law of conservation of energy states that the sum of the total amount of heat transferred 
to the thread segment s per unit time and the total work done by forces acting on the thread 
segment s per unit time is equal to the change of the sum of the internal energy and kinetic 
energy of the particles of the thread segment per unit time. 

In formula this leads to: 

~ I (p'u+�89 s is q ' d s - Q ( s 2 ) + Q ( s l ) + F ' w ( s 2 ) - F ' w ( s l )  + f K " w d s .  

Using the mass balance (15), it follows from (11) and (13) that:  

�9 t ~ _  , p'(u+�89 w ) ~ = q - Q ~  ( F 'w) s+K" w 

Journal of Engineerin9 Math., Vol. 7 (1973) 139 146 



144 J. P. Roos, C. Schweigman, R. Timman 

From the equation of motion (21) it follows that : 

p ' w ' w ~ = w ' F s + g " w .  

So, the energy equation reads as follows: 

p'u~ = q ' - Q s + F ' w s .  (24) 

Using (19) and (6) through (9), the third term on the left-hand side of (24), which is the deforma- 
tion work per unit of actual length, can be written as follows : 

F .  ws = Frs "(rst+V~rs+Vrs~) Fvs .  (25) 

So, the energy balance may be written as: 

p' u~ = q ' - Q s  + Fvs . (26) 

In fact, this equation is the first law of thermodynamics : the change in internal energy equals 
the sum of heat and work supplied. The equation (26) has been written in general terms. For 
synthetic yarns the internal energy u will generally be an intricate function of temperature, 
crystallinity, orientation of the molecules, entropy etc. If we are interested in both the tempera- 
ture of the thread and all the yarn properties, the relations between these properties and the 
temperature, elongation and tension have to be known. Besides the mass balance, equation of 
motion and energy balance, also the rheology, equation of state and possible other relations 
have to be known then. In this paper no attention is given to these important relations. At the 
end of this chapter a more practical form for the energy balance will be given for a situation 
where the internal energy only depends on the temperature T and the crystallinity ~ of the yarn: 

u = u(T,  c 0 . 

Moreover, it is assumed that heat transfer due to radiation and convection contributes to q' 
in such a way that the flow of heat through the surface area per unit length f2' is proportional 
to the difference between the temperature T of the thread and the temperature T o of the sur- 
rounding medium : 

q' = kg2'(T o - T)  

where k is the coefficient of the heat transfer. 
Assume that Fick's law holds: 

Q = -~AT~ 

where )~ is the heat conductivity and A the area of a cross section. 
In this situation, (26) reads as follows: 

p' cT~-  p'c*cx~ = kg2' (T  o - T ) +  (2AT~)s + FVs (27) 

where c = UT and c* = - u~. 
So, c is the specific heat at a constant crystallinity and c* is the heat of crystallization at a 

constant temperature. In this example no elastic deformation has been taken into consideration. 
If the elastic deformation is important, the potential energy contributes to the internal energy u. 

6. Example 

An illustration of the formulation of the equation of motion is given by the steady-state balloon 
curve calculation for ring spindles, where air drag is taken into consideration, see [5], [7]. 

The problem is to describe the course of the yarn when the yarn is led through a guide point 
and a traveller ring, the latter rotating with a constant angular velocity co around a vertical axis 
(see Fig.. 3). 

Through the fixed guide point O a system of coordinates X, Y, Z is chosen. The external 
force K' working on the thread is the air drag. 

Journal of Engineering Math., Vol. 7 (1973) 139-146 



Mathematical  formulation o f  the laws o f  conservation o f  mass and energy 145 

fixed guide point 
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Figure 3. Balloon curve. 
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Figure 4. The direction N of the air drag. 

It can be argued that only the component perpendicular to the thread should be taken into 
account, see [5], [7] and the references given there. So, the air drag is directed along the com- 
ponent N of the velocity w in the plane through w and the tangent r~; this component N is 
normal to the tangent (see Fig. 4). 

The magnitude of the air drag per unit length of the thread is assumed to be cN  2. The 
coefficient c is given in the literature, see [5] for references. 

So we may write: 

K' = - c N N  . (28) 

The vector N is given by: 

N = w - ( w ' r s ) r  s 

or, with (6) and (7): 

N = r t - ( r t  "rs)rs. (29) 

Using (7) and (29), the following relation can be derived for N:  

N 2=  r t . r t - ( r  t .rs) 2. (30) 

The thread is assumed to be rigid; no strain can occur. Applying the mass balance as formulated 
in (17) and (18), it follows that v is constant along the thread. 

We now introduce the following transformation of coordinates : 

x = X(s )  cos co t -  Y(s) sin cot 

y = X(s )  sin cot+ Y(s) cos cot 

z = z ( s ) .  

So, we consider the stationary course of the thread referring to a system of coordinates X, Y, Z 
rotating with constant angular velocity around the z-axis. 

Substitution of these transformation formulas in (22) and (28) through (30) leads after some 
simple calculation to the following equation: 

- p' co2 X -  2p'vco Ys + p' v2 Xss = 

= cco i {X 2 + y2 _ (X  Y s -  gXs)2} ~ { Y +  (X  Y~- YX~)X~} + (FX~)~. 

In the same way the other equations for Y and Z are derived. In [5] and [7] boundary conditions 
and numerical solutions are given in detail. 
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7. Discussion 

J. P. Roos,  C. Schwe iyman  , R.  T imman  

The mathemat ica l  formulat ion of the laws of conservat ion  as given by the equat ions  (7), (18), 
(22) and (26) do not  suffice to describe a running thread complete ly :  the yarn rheology and a 
descript ion of the internal energy of yarn are needed, but  this lies outside the scope of this 
paper.  

However ,  it m a y  be pointed  out  that  the yarn  rheology has some mathemat i ca l  consequences 
that  are impor tan t  in solving the equations.  We do not  go into detail, but  shall only indicate 
the line of  argument .  

Let  us consider  the following types of  rheology. 
(i) No '  deformat ion  occurs, i.e. the strain e is constant .  Fo r  a homogeneous  thread p'  is 

constant ,  too, see (17). Fo r  an inhomogeneous  thread p'  follows f rom (16). 
(ii) Stress depends only on strain or, aequivalently,  on p', e.g. H o o k e a n  elasticity. 
(iii) The  third type of rheology is more  complicated.  T ime effects are included. A relation 

exists between the local strain rate, the local strain and the local stress. 
Assume  that  yarn t empera tu re  is constant ,  so that  the energy balance need not  be considered; 

The  equat ions  (7), (18), (22) in combina t ion  with a theological  descript ion define the course 
of the running thread. 

By deriving the characteristics,  see e.g. [3, p. 425] it can be shown that  the system is parabol ic  
for the rheologies (i) and (iii), but  hyperbol ic  for rheology (ii). 
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